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Easy a- to b-migration of an enol moiety on a pyrrole ring
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Abstract—Functionalized pyrrolic enols, 2-(2,2-dicyano-1-hydroxyethenyl)-1-methylpyrroles, synthesized from 2-ethenylpyrroles by
a nucleophilic SEt-OH exchange, upon heating (75–142 �C) are readily rearranged to their 3-isomers in near to quantitative yield.
The inter or intramolecular auto-protonation of a pyrrole ring by the acidic enol hydroxyl to form a mesomeric pyrrolium cation or
zwitterion is suggested to be a key step in the rearrangement.
� 2006 Elsevier Ltd. All rights reserved.
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Functionalized C-vinylpyrroles are key structural units
of natural chromophores such as chlorophylls, hemo-
globin, vitamin B12, and related macrocyclic tetrapyrrole
pigments which play vital roles in plants and animals1 as
well as being valuable intermediates for the construction
of diverse pyrrole assemblies.2

Among functional vinyl compounds, enols and their
reactive cationic intermediates are under extensive inves-
tigation3 (due to their activity in DNA damage,4 trans-
formations induced by B12-dependent enzymes5 and
ribonucleotide reductase6), attention being particularly
focused on heterocyclic enols.3c

The last two decades have witnessed a steadily growing
understanding of the structure and reactivity of isolable
enols,3a,7 normally fleetingly existing tautomers of alde-
hydes and ketones.

In spite of recent successful syntheses of stable enols of
the furan, thiophene3c, and pyridine8 series, attempts to
synthesize the corresponding representative with 2-pyr-
rolyl substituent have failed; instead, the tautomeric
ketone was isolated in 7% yield along with a mixture
of unidentified products.3c
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Thus, the synthesis of vinylpyrroles with an enol func-
tion and study of their reactivity represent important
issues in both vinylpyrrole and enol chemistry as well
as in a broader sense.

In this letter, we report a novel synthesis of functional-
ized 2-vinylpyrroles 3 and 4 and an unprecedentedly
easy migration of their enol moieties from a- to b-posi-
tion of the pyrrole ring.

The stable enols 3 and 4, 2-(2,2-dicyano-1-hydroxyethen-
yl)-1-methylpyrroles, were synthesized from 2-(2,2-
dicyano-1-ethylthioethenyl)-1-methylpyrroles 1 and 2
by the easy exchange of their ethylthio group for
hydroxyl by the action of NaOH (MeOH–H2O,
40–45 �C, 1 h), yields being 50% and 85%, respectively
(Scheme 1).9

Upon heating (75–142 �C), enols 3 and 4 were found to
rearrange to their 3-isomers 5 and 6 (Scheme 2).
NCMe NCMe1 h

1, 2 3 (50%), 4 (85%)
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Figure 1. Computed preferred conformations and relative energies of
the a- (4)- and b- (6)-isomers (MP2//HF/6-311++G**).
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Thus, enol 3 after 5 min boiling in benzene, toluene or
o-xylene contained correspondingly 3%, 4%, and 8% of
isomer 5 (1H NMR monitoring), while refluxing 3 for
1 h in toluene resulted in 60% conversion of 3 to 5,
and in o-xylene the conversion was quantitative. In
DMSO-d6, after 21 h heating at 110 �C, the ratio of
3:5 was 1:2.10

Surprisingly, fast and complete rearrangement occurred
with enol 4, which was converted into 6 simply upon
crystallization from benzene.11

Although enol 3 was previously claimed to have been
synthesized by another route12, though characterized
only by one OH stretching band in aqueous(?) NaHCO3

solution, no migration of its enol moiety was reported.

It should be emphasized that the rearrangement ob-
served is unique for pyrrole chemistry, both because of
its ease and preferred position. Indeed, thermal substitu-
ent migration in the pyrrole ring is known to proceed at
much higher temperatures (300–700 �C) with preferred
formation of a-isomers.13 Thus, for instance, 1-(2-pyr-
idyl)pyrrole rearranges at 350 �C to 2-(2-pyridyl)pyrrole
and 3-(2-pyridyl)pyrrole in a ratio of 5:1, at 710 �C only
the 2-isomer is formed.13b,14,15 The latter is stable at
710 �C, whereas 3-(2-pyridyl)pyrrole is readily converted
into the 2-isomer.13b,15 Similarly, at 700 �C, only the
methyl substituent of 1-methyl-2-(2-pyridyl)pyrrole
migrates to give 2-methyl-5-(2-pyridyl)pyrrole.13b,16

Apparently, the easy a- to b-migration of an enol moiety
in 3 and 4 is due to (i) the enhanced acidity of the hydro-
xyl function (the effect of the two strong electron-with-
drawing CN groups in a conjugated system, actually
the enol moiety in 3 and 4 is a ‘vinylog’ of cyanic acid,
HOCN) and (ii) the sensitivity of the pyrrole ring to-
wards protonation.

Therefore, a tentative mechanism for the rearrangement
can be proposed as follows (Scheme 3): first self-proton-
ation at the a-position of the pyrrole ring occurs to give
the mesomeric cation A, in which 1,2 vinyl migration
takes place, the process being complete with proton
transfer from the protonated product C to the anion B.

Apparently, the alternative intramolecular auto-proton-
ation of the pyrrole ring to generate the zwitterion D,
further rearranging to the products 5 and 6 (Scheme 4)
may also not be fully excluded, particularly for the di-
lute solutions (�1%) employed in this work. In the latter
case, the generally unfavorable proton transfer in the
four-membered ring may be compensated by the forma-
tion of the stable mesomeric zwitterion D.
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Support for the crucial role of the hydroxyl proton in
the rearrangement is the fact that no migration of the
vinyl group occurs for the ethylthio analogs 1 and 2
under the same conditions.

The computed (MP2//HF/6-311++G**)17 energy differ-
ence for isomers 4 and 6 (2.1 kcal/mol, Fig. 1), though in
favor of the b-isomer 6, is rather small to be considered
as a driving force of the rearrangement, thus imply-
ing the kinetic nature of the migration of the enol
moiety.

The computed preferred conformations of the a- and b-
isomers (4 and 6) are essentially non-planar (Fig. 1) with
the hydroxyl group turned outward from the pyrrole
ring in the b-isomer 6 which hinders the reverse auto-
protonation. Besides, the acidity of the hydroxyl group
of the b-isomer 6 is likely to be lower compared to that
of the a-isomer 4 due to the smaller positive charge at
the pyrrole b-position.

The proposed mechanisms (Schemes 3 and 4) agree well
with the reactivity difference of the starting enols 3 and
4: the electron-donor (tetramethylene) moiety attached
to positions 2 and 3 of the tetrahydroindole derivative
4 enhances the protophilicity of the pyrrole ring as com-
pared to the unsubstituted enol 3.
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